ترجمه مقاله طبقه بندی EEG از کودکان سالم و ADHD با استفاده از ویژگی های غیر خطی و شبکه عصبی

21 شهریور 1397 | 14:58

ترجمه مقاله طبقه بندی EEG از کودکان سالم و ADHD با استفاده از ویژگی های غیر خطی و شبکه عصبی
عنوان فارسی مقاله: طبقه بندی EEG از کودکان سالم و ADHD با استفاده از ویژگی های غیر خطی و شبکه عصبی
عنوان انگلیسی مقاله: EEG Classification of ADHD and Normal Children Using Non-linear Features and Neural Network
مجله/کنفرانس: Biomedical Engineering Letters
رشته های تحصیلی مرتبط: پزشکی
گرایش های تحصیلی مرتبط: بیوالکتریک، مغز و اعصاب، روانپزشکی
کلمات کلیدی فارسی: اختلال بیش فعالی- نقص توجه(ADHD)، الکتروآنسفالوگرم(EEG)، مشخصه های غیر خطی، انتخاب ویژگی، شبکه ی عصبی(NN)
کلمات کلیدی انگلیسی: Attention-Deficit Hyperactivity Disorder (ADHD); Electroencephalogram (EEG); Non-linear features; Feature selection; Neural Network (NN)
نوع نگارش مقاله: Original Article
نمایه: scopus - master journals
DOI: doi.org/10.1007/s13534-016-0218-2
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنالی
نوع مقاله: ISI
سال انتشار مقاله: 2016
شاخص H_index: 14
SJR: 0.332
شناسه ISSN: 2093-9868
فرمت مقاله انگلیسی: PDF
فرمت ترجمه فارسی: Word
تعداد صفحات مقاله انگلیسی: 8
تعداد صفحات ترجمه فارسی: 16
کد محصول: EM375
فهرست انگلیسی مطالب
Abstract

INTRODUCTION

METHODS
-Participants
-Experiment
-Pre-processing of signals
-Feature extraction
-Feature selection
-Neural network and classification

RESULTS

DISCUSSION AND CONCLUSION

CONFLICT OF INTEREST STATEMENTS

REFERENCES
ترجمه فارسی فهرست مطالب
چکیده

مقدمه

مواد و روش ها
-شرکت کننده ها
-آزمایش
-پیش پردازش سیگنال ها
-برداشت ویژگی
-انتخاب مشخصه
-شبکه عصبی و طبقه بندی

نتایج

بحث و نتیجه گیری

عبارات تضاد منفعتی

منابع
نمونه متن انگلیسی مقاله
Abstract

Purpose Attention-Deficit Hyperactivity Disorder (ADHD) is a neuro-developmental disorder that is characterized by hyperactivity, inattention and abrupt behaviors. This study proposes an approach for distinguishing ADHD children from normal children using their EEG signals when performing a cognitive task. Methods In this study, 30 children with ADHD and 30 agematched healthy children without neurological disorders underwent electroencephalography (EEG) when performing a task to stimulate their attention. Fractal dimension (FD), approximate entropy and lyapunov exponent were extracted from EEG signals as non-linear features. In order to improve the classification results, double input symmetrical relevance (DISR) and minimum Redundancy Maximum Relevance (mRMR) methods were used to select the best features as inputs to multi-layer perceptron (MLP) neural network. Results As expected, children with ADHD had more delays and were less accurate in doing the cognitive task. Also, the extracted non-linear features revealed that non-linear indices were greater in different regions of the brain of ADHD children compared to healthy children. This could indicate a more chaotic behavior of ADHD children while performing a cognitive task. Finally, the accuracy of 92.28% and 93.65% were achieved using mRMR method and DISR method using MLP, respectively. Conclusions The results of this study demonstrate the ability of the non-linear features to distinguish ADHD children from healthy children.
نمونه متن فارسی مقاله
چکیده

هدف اختلال بیش فعالی- کم توجهی(ADHD) یک اختلال توسعه یافته ی عصبی می باشد که ویژگی های آن بیش فعالی، عدم توجه و رفتارهای تند می باشد. این مقاله رویکردی را معرفی می نماید تا کودکان ADHD را از بچه های سالم با استفاده از سیگنال های EEG آنها زمان صورت گرفتن یک وظیفه ی معین تشخیص داده شوند.

مواد و روش ها: در این مقاله، 30 کودک با ADHD و 30 کودک سالم با همین سن و سال بدون الکتروآنسفالوگرافی(EEG) تحت اختلال های عصب شناسی هنگام انجام دادن فعالیتی با هم مقایسه می شوند تا رفتارها و توجه های آنها شبیه سازی شوند. ابعاد فراکتال(FD)، انتروپی تقریبی و نمای لیاپونوف از سیگنال های EEG بعنوان ویژگی های غیرخطی استخراج شدند. به منظور بهبود در نتایج طبقه بندی، روش های مربوط متقارن جفت ورودی(DISR) و حداقل مربوط حداکثر فراوانی(mRMR) برای انتخاب بهترین ویژگی ها بعنوان ورودی شبکه ی عصبی پرسپترون چند لایه ای(MLP) مورد استفاده قرار گرفتند.

نتایج همانگونه که انتظار میرفت، کودکان با ADHD در انجام وظائف مشخص و شناخته شده تاخیرات بیشتر و دقت کمتری داشتند. بنابراین، ویژگی های استخراج شده ی غیر خطی نشان داد که شاخص های غیر خطی در قسمت های مختلف مغز فرزندان ADHD در مقایسه با فرزندان سالم بزرگتر می باشد. این موضوع همچنین می تواند بیان کننده ی رفتار نامناسب بیشتری از کوکان ADHD هنگام انجام دادن یک وظیفه مشخص باشد. در نهایت اینکه، دقت 92.28 درصد و 93.65 درصد به ترتیب با استفاده از روش mRMR و روش DISR با استفاده از MLP صورت گرفت.

نتیجه گیری: نتایج این مقاله نشان دهنده ی توانمندی مشخصه های غیر خطی برای تشخیص کودکان ADHD از کودکان سالم می باشد.
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

جستجوی پیشرفته مشاهده خریدهای قبلی